爱因斯坦一百年前预测的引力波被探测到 《三体》世界或有望实现

中国企业家杂志 2018-04-02 12:31:00





人类首次直接探测到了引力波!并且首次观测到了双黑洞的碰撞与并合。引力波的发现,是在爱因斯坦提出相对论100周年以后对广义相对论这一理论本身的一个重要肯定。也许真能像科幻小说《三体》中所描述的那样,被人类用于星际通讯领域。




来源:本文综合自腾讯科技、政商内参


1915年,爱因斯坦发表了场方程,建立了广义相对论。


一百年后,北京时间2月11日23点30分,美国国家科学基金会(NSF)召集了来自加州理工学院、麻省理工学院以及LIGO科学合作组织的科学家在华盛顿特区国家媒体中心宣布:人类首次直接探测到了引力波!并且首次观测到了双黑洞的碰撞与并合。


引力波的发现,是在爱因斯坦提出相对论100周年以后对广义相对论这一理论本身的一个重要肯定。



科学家为直接探测到引力波的消息欢呼(从左到右分别为:Gabriela Gonzalez, Rainer Weiss和Kip Thorne)


这次探测到的引力波是由13亿光年之外的两颗黑洞在合并的最后阶段产生的。两颗黑洞的初始质量分别为29颗太阳和36颗太阳,合并成了一颗62倍太阳质量高速旋转的黑洞,亏损的质量以强大引力波的形式释放到宇宙空间,经过13亿年的漫长旅行,终于抵达了地球,被美国的“激光干涉引力波天文台”(LIGO)的两台孪生引力波探测器探测到。


两台探测器记录到的波形


探测到的引力波信号初始频率为35赫兹,接着迅速提升到了250赫兹,最后变得无序而消失,整个过程持续了仅四分之一秒。位于利文斯顿的探测器比位于汉福德的探测器早探测到7毫秒,这个时间差表明引力波是从南部天区传来。


引力波是什么


在物理学上,引力波是爱因斯坦广义相对论所预言的一种以光速传播的时空波动,如同石头丢进水里产生的波纹一样,引力波被视为宇宙中的“时空涟漪”。通常引力波的产生非常困难,地球围绕太阳以每秒30千米的速度前进,发出的引力波功率仅为200瓦,还不如家用电饭煲功率大。宇宙中大质量天体的加速、碰撞和合并等事件才可以形成强大的引力波,但能产生这种较强引力波的波源距离地球都十分遥远,传播到地球时变得非常微弱。


根据广义相对论,该双星系统会以引力波的形式损失能量,轨道周期每年缩短76.5微秒


1974年物理学家约瑟夫·泰勒(Joseph Hooton Taylor, Jr)和拉塞尔·赫尔斯(Russell Alan Hulse)发现了一颗编号为PSR B1913+16的脉冲星,他们发现该脉冲星处于双星系统中,其伴星也是一颗中子星。根据广义相对论,该双星系统会以引力波的形式损失能量,轨道周期每年缩短76.5微秒,轨道半长轴每年减少3.5米,预计大约经过3亿年后发生合并。


自1974年,泰勒和赫尔斯和对这个双星系统的轨道进行了长时间的观测,观测值和广义相对论预言的数值符合得非常好,这间接证明了引力波的存在。泰勒和赫尔斯也因这项工作于1993年荣获诺贝尔物理学奖。


然而,想要成功探测到引力波,不仅需要探测器具有惊人的探测灵敏度,还需要将真正来自于引力波源的信号与仪器噪声分离:例如由环境因素或者仪器本身导致的微扰,都会扰乱或者轻易淹没我们所要寻找的信号。这也是为什么需要建造多个探测器的主要原因。它们帮助我们区分引力波和仪器环境噪声,只有真正的引力波信号会出现在两个或者两个以上的探测器中。当然考虑到引力波在两个探测器之间传播的时间,前后出现会相隔几个毫秒。


共振型引力波探测器


韦伯教授在调试他的引力波探测器(1965年)


上世纪60年代,马里兰大学的物理学家韦伯(Joseph Weber)首先提出了一种共振型引力波探测器。该探测器由多层铝筒构成,直径1米,长2米,质量约1000千克,用细丝悬挂起来。当引力波经过圆柱时,圆柱会发生共振,进而可以通过安装在圆柱周围的压电传感器检测到。韦伯曾经在相距1000千米的两个地方同时放置了相同的探测器,只有两个探测器同时检测到相同的信号才被记录下来。1968年,韦伯宣称他探测到了引力波,立刻引起了学界的轰动,但是后来的重复实验都一无所获。


激光干涉引力波探测器


两台孪生引力波探测器分别在华盛顿州的汉福德(左)和路易斯安那州的列文斯顿,彼此相距3000公里


上世纪70年代,加州理工学院的物理学家莱纳·魏斯(Rainer Weiss)等人意识到用激光干涉方法探测引力波的可能性。引力波的探测对仪器的灵敏度要求非常高,要能够在1000米的距离上感知10^-18米的变化,相当于质子直径的千分之一。直到上世纪90年代,如此高灵敏度所需的技术条件才逐渐趋于成熟。


1991年,麻省理工学院与加州理工学院在美国国家科学基金会(NSF)的资助下,开始联合建设“激光干涉引力波天文台”(LIGO)。LIGO的主要部分是两个互相垂直的干涉臂,臂长均为4000米。在两臂交会处,从激光光源发出的光束被一分为二,分别进入互相垂直并保持超真空状态的两空心圆柱体内,然后被终端的镜面反射回原出发点,并在那里发生干涉。若有引力波通过,便会引起时空变形,一臂的长度会略为变长而另一臂的长度则略为缩短,这样就会造成光程差发生变化,因此激光干涉条纹就会发生相应的变化。


两台孪生引力波探测器分别在华盛顿州的汉福德和路易斯安那州的列文斯顿,彼此相距3000千米。只有当两个探测器同时检测到相同的信号才有可能是引力波。LIGO于1999年初步建成,2002年开始运行。


2007年,LIGO进行了一次升级改造,包括采用更高功率的激光器、进一步减少振动等。升级后的LIGO被称为“增强LIGO”。2009年7月,增强LIGO开始运行直到2010年10月结束。


在2002年到2010年期间,LIGO没能探测到引力波存在的可靠证据。


位于汉福德地区的LIGO观测站的北臂


2010年,LIGO进行了为期五年的重大升级改造,改造之后的探测器灵敏度要求提高10倍,被称为“先进LIGO”。2015年9月18日,先进LIGO开始试运行。据悉,本次探测到的引力波是升级前的LIGO于2015年9月14日探测到的信号。


目前主流的引力波探测器都是这种基于迈克耳孙干涉仪的原理。世界范围内,除了美国的LIGO引力波探测器之外,还有德国和英国合作的GEO600、法国和意大利合作的VIRGO、日本的TAMA300以及计划中的LCGT、澳大利亚计划中的AIGO以及印度计划中的LIGO-India。



PTA、LISA(eLISA)与LIGO(aLIGO)三种方式分别探测不同频率的引力波,构成互补关系。


地基探测器探测引力波的频率范围是1赫兹~10^4赫兹。除了地基引力波探测器之外,科学家也在积极筹备“激光干涉太空引力波天线”(LISA/ eLISA)。理论上,eLISA探测引力波频率范围为10^-5赫兹~1赫兹。


值得一提的是,科学家也在利用一种叫“脉冲星计时阵列”(PTA)的射电天文方法探测更低频率(纳赫兹)的引力波。PTA与eLISA、LIGO在探测频率上形成互补关系。


GW150914事件


在2015年9月14日北京时间17点50分45秒,LIGO位于美国利文斯顿与汉福德的两台探测器同时观测到了GW150914信号。这个信号首先由低延迟搜索方法来识别(这种搜索方法并不关心精确的引力波波形,它通过寻找可能为引力波的某些特征迹象来较快速地寻找引力波),在仅仅三分钟之后,低延迟搜索方法就将此作为引力波的候选事件汇报了出来。之后LIGO干涉仪获得的引力波应变数据又被LSC的数据分析专家们拿来和一个海量的由理论计算产生的波形库中的波形相对照,这个过程是为了找到和原数据最匹配的波形,也就是通常所说的匹配滤波器法。下图展示了进一步数据分析后的主要结果,证实了GW150914是两个黑洞并合的事件。

通过比较引力波应变数据(以在汉福德的H1探测器所接收的应变为例)和由广义相对论计算得出的在旋进(inspiral)、合并(merger)、铃宕(ringdown)三个过程的最佳匹配波形,得出的关于GW150914的一些关键结论。图片下方展示了两个黑洞的间距和相对速度随时间演化的过程,它们的速度在不到0.2秒的时间内达到了0.6倍光速。


后续跟进的数据分析结果还显示,GW150914是一个36倍太阳质量的黑洞和一个29倍太阳质量黑洞并合事件,在并合后产生了一个62倍太阳质量带自旋的kerr黑洞。这一切发生于距离我们十几亿光年以外的地方。LIGO 探测器真实地探测到了很久以前发生于某个遥远星系的一个大事件!


将并合前的两个黑洞和最终产生的黑洞相比较,可以发现这次并合将大约3倍太阳质量(大约600万亿亿亿(~6×1030)公斤)转换成了引力波能量,其中绝大部分在不到一秒的时间里释放了出去。相比之下,太阳在一秒内发出的能量大约只相当于是四十亿(~4×109)公斤物质转换成的电磁辐射。实际上,令人惊奇的是,GW150914放出的峰值功率要比可观测宇宙中所有星系的光度总和还高10倍以上!正是因为致密双星系统在并合前的最后阶段才能释放达到峰值功率的引力波,所以之前提到的还有3亿年才能并合的PSR1913+16双星由于正在释放的引力波强度还太弱,因此很难被探测到。


图7中数据还表明,这两个黑洞在并合前的间隔只有数百公里,引力波的频率在此时大约达到了150Hz。因为足够致密,黑洞是唯一已知在如此近的距离都不会碰撞融合的物体。由并合前总质量可知,双中子星的总质量远低于此,而如果是一对黑洞和中子星组成的双星的话,要产生这样的波形,它们必定会在远低于150Hz的时候就早已开始并合了。因此,GW159014确凿无误是一次双黑洞的并合事件。


引力波探测的意义


引力波天文学将是继传统电磁波天文学、宇宙线天文学和中微子天文学之后,人类认识宇宙的全新窗口,必将引发一场天文学的革命。


引力波探测除了能够检验广义相对论之外,还有助于证明其它版本的引力理论正确与否,还将推动引力量子化的研究,最终把引力融入其它三种基本相互作用,完成爱因斯坦的伟大梦想。


引力波像其它的波一样,携带着能量和信息。电磁波(宇宙背景微波辐射)只能让我们看到大爆炸38万年之后的景象,而引力波能够让我们回望宇宙大爆炸最初瞬间,检验宇宙大爆炸理论的正确与否。


据悉,引力波的穿透能力比中微子还要强,它也许真能像科幻小说《三体》中所描述的那样,被人类用于星际通讯领域。正如马克斯·普朗克引力物理研究所、清华大学博士后胡一鸣所说的那样——“在《星际穿越》和《三体》中,都不约而同地将引力波选为了未来科技发达的人类的通讯手段,这也许只能是美好的幻想,但对于天文研究而言,引力波的确开启了一扇新的窗口。吹进来的第一缕清风,就带来了一个重大的信息:极重的恒星级双黑洞系统存在并可以在足够短的时间(10亿年)内并合。这是让我们始料未及的。谁能知道在将来的更多的探测中,LIGO和一众引力波探测器能带给我们什么样的惊喜呢?” 



友情链接