精英将被淘汰,华尔街即将被人工智能全面接管

菁英范 2018-04-15 14:12:38


机器学习技术凭借其在通过数据生成洞见方面的非凡能力,有望参与99%的投资活动,华尔街的首席执行官们表示。这是人工智能(AI)与沃伦·巴菲特(Warren Buffett)之间的对决。


元盛资产管理(Winton)是一家位于英国伦敦的对冲基金公司,该公司使用人工智能来检验沃伦·巴菲特的古老交易原则:大型收购通常会损害买方股东的利益。研究人员收集并分析了近9,000笔在美国发生的交易的数据,这些数据可回溯至20世纪60年代。


那么结果如何呢?元盛表示巴菲特的论点站不住脚,大型收购并不一定会摧毁价值。“它可防止我们根据错误信号交易,从而避免因此可能导致的金钱损失,”在这家管理规模达300亿美元的对冲基金公司领导数据科学家团队的丹尼尔·米切尔(Daniel Mitchell)说道。巴菲特并未回应发送给助理的评论请求。


人工智能在经历过去数十年的虚假繁荣后,逐渐在投资领域的未来占据了一席之地。Two Sigma和高盛(Goldman Sachs Group Inc.)等资产管理巨头及Schonfeld Strategic Advisors等小型资产管理公司采用人工智能作为战略基石或研究工具。


从这一点来看,人工智能可以走多远呢?


英仕曼集团(Man Group Plc)首席执行官卢克·埃利斯(Luke Ellis)认为缓慢的接替过程正在到来。这家管理规模达1035亿美元的英国伦敦基金公司已经使用机器学习技术将大约130亿美元投资于多个对冲基金。机器学习技术会在十年内渗透到英仕曼业务活动的方方面面,从执行交易到帮助公司的全权/单位信托部门挑选证券,埃利斯在一次访谈中说道。


“如果计算能力和数据生成以目前的速率保持增长,那么机器学习技术将在25年内参与到99%的投资管理活动中去,”埃利斯说道,“它会在我们的生活中无处不在。我不认为机器学习技术是我们所有事业的答案。它只是能够让我们更好地完成我们在做的许多事情而已。”


人员“伤亡”可能会十分惨重:咨询机构Opimas在一项针对金融公司的调查中估计,到2025年,世界范围内资产管理领域的300,000万个工作岗位中的90,000个工作岗位会因人工智能而消失,其中包括基金经理、分析师和后勤办公室员工。英仕曼集团和元盛等量化基金先锋已经在其人工智能变革中领先一步。几乎其他所有公司都需要克服令人生畏的阻碍。


人工智能最近的壮举都是经过数十年的酝酿而成就的:打败围棋冠军、为无人驾驶汽车导航以及为投资者赚钱。


人工智能发展时间线

1950年:艾伦·图灵(Alan Turing)开发出用于识别机器智能的图灵测试

1956年:约翰·麦卡锡(John McCarthy)在达特矛斯会议上提出“人工智能”这一概念

1957年:发明感知器(Perceptron)算法,该算法经过训练可用于分类图像

1964年:计算机的自然语言理解程度足以解答代数应用题

1968年:斯坦利·库布里克(Stanley Kubrick)在其科幻小说《2001:太空漫游》(2001: A Space Odyssey)中塑造了智能计算机哈尔(HAL 9000)这个角色

1979年:自动驾驶汽车斯坦福推车(Stanford Cart)能够在满是障碍物的房间中绕开所有障碍物前行

1982年:詹姆斯·西蒙斯(James Simons)创办量化投资公司文艺复兴科技(Renaissance Technologies)

1988年:戴维·肖(David Shaw)创办D.E. Shaw公司,这家公司是对冲基金公司中的人工智能早期采用者

20世纪90年代:机器学习领域在人工智能方面取得进步、基于案例的推理、数据挖掘、虚拟现实

20世纪90年代:网络爬虫、其他基于人工智能的信息程序成为互联网支柱

1997年:IBM的超级计算机深蓝(Deep Blue)打败国际象棋冠军加里·卡斯帕罗夫(Garry Kasparov)

1999年:索尼推出电子宠物狗AIBO,它能够理解100种语音命令、学习及成长

2005年:塞巴斯蒂安·史朗(Sebastian Thrun)率领的斯坦福团队赢得美国国防高级研究计划局(DARPA)的132英里无人驾驶汽车竞赛

2011年:IBM能够回答问题的人工智能系统沃森(Watson)在综艺节目《危机边缘》(Jeopardy)的测验中胜出

2012年:谷歌的自动驾驶汽车在美国内华达州获得许可

2014年:英仕曼集团开始使用机器学习算法来管理客户资产

2016年:Alphabet旗下公司DeepMind推出的阿尔法围棋(AlphaGo)计算机程序打败围棋世界冠军

2017年:AlphaGo Zero与自我对战,以100:0的成绩打败AlphaGo

2017年:Facebook完全转为使用神经网络,每天的翻译量达到45亿次

2017年:由IBM的超级计算机沃森提供支持的首个人工智能ETF股票基金开始交易

2017年:部署机器学习技术的美国对冲基金公司Two Sigma的资产管理规模超过500亿美元


根据英仕曼集团的预测,到21世纪40年代,人工智能可能会参与99%的投资管理活动。


因为鲜有能够制定可获利策略的科学家,导致部分投资者选择不参与其中。技术和数据的高额成本也对已经因资金流向被动型基金而压力倍增的公司造成了沉重负担。但机器学习技术在发现人力所及范围以外投资机遇方面的非凡能力赋予了这项技术令人无法忽略的诱惑力。现在,各家公司都在使用人工智能技术来准备大量社交媒体和智能手机数据、比分析师更快地预测公司收益和销售额、通过文档解读高管情绪以及制定完整策略。


Vasant Dhar于20年前在美国理财公司SCT Capital Management成立了Adaptive Quant Trading计划,这项计划是首批使用机器学习技术的对冲基金之一,管理规模达3.5亿美元。他说道:“机器将会完成更多发现投资机遇这类苦差事。它们可以生成假设,然后进行测试,最后告诉人类,‘这很有趣,值得深入挖掘。’随着机器带来更多价值,它会改变人类工作的性质。”


由于贝莱德公司(BlackRock Inc.)和领航投资集团(Vanguard Group)一路吞噬各种资金并且其管理规模可能达到20万亿美元,人工智能策略还需要全力应对此类被动型投资公司发起的攻势。指数基金和Smart Beta基金的套利能力可能会让人工智能在挑选价值型股票或成长型股票方面的优势无法显现。但机器学习技术表明,在未被发现的市场中,其表现优于被动型波动和利用模式,可以称得上是Smart Beta高级版本。


投资者们受够了全权信托公司数年来乏善可陈的表现,因而对此十分买账。量化基金(其中许多基金使用人工智能技术)的管理规模自2010年以来飙升了86%,达到9,400亿美元。美国对冲基金研究公司Hedge Fund Research表示,基本面对冲基金在2016年遭遇了830亿美元的资金外流,而量化基金则吸入了130亿美元资金。这一趋势一直持续到2017年9月。


人工智能交易软件能通过吸取大量数据来了解这个世界,然后对股票、债券、商品和其他金融产品进行预测。人工智能机器可以获取书籍、Twitter消息、新闻报道、金融数据、企业财报、国际货币政策,甚至是综艺节目《周六夜现场》的概况等一切有助于其软件理解全球趋势的信息。人工智能可以持续不间断地观察这些信息,从不知疲倦,一直学习,不断优化预测。


对冲基金数据服务公司Eurekahedge追踪了23家使用人工智能技术的对冲基金,结果发现,人工智能的表现要优于人类。在过去的十年,宽客们(一群靠数学模型分析金融市场的物理学家和数学家)一直是对冲基金的宠儿。但是,他们是依靠对历史数据的分析,来创建一个可以预测市场趋势的模型。


人工智能也能这样做,而且还能吸取最新的数据,从而持续提升其预测模型。这样看来,“宽客”模型就像一个静态的医学教科书,而人工智能学习机器就像一个持续追求最新研究的实习医生。哪一个的诊断结果会更好?Eurekahedge称,传统模型的建立基于历史数据,通常不能实时提供更好的回报。


尽管人工智能在数据方面拥有非凡的能力,但其局限性也十分明显。人工智能缺乏想象力,或者说缺乏人类在面临事件没有按之前许多次那样发生的情况下预计事件的能力(从政治方面到宏观经济方面)。如果说对冲基金经理约翰·保尔森(John Paulson)能够预见次贷危机即将到来,人工智能则会对此毫无头绪,因为它没有足够的相关历史数据来进行对比并形成看法。


“机器没有预测危机的依据,因为每个危机都是独一无二的,”同时身为纽约大学数据科学和商业分析专业教授的Dhar表示。“人类擅长对危机等事件进行推理,并且有时能够预测危机,但我们经常会出错。看看过去几年关于利率的预测就知道了。”不管是对是错,基金经理及其市场观点都将在人工智能时代发挥重要作用。基本面分析师则会面临更大的威胁。


公司有时每年会向能够利用大数据且经验丰富的机器学习专家支付近100万美元的薪酬。这就让留给研究公司基本面的分析师的资金大幅减少。他们可能需要学习编码才能保住自己的岗位。


“随着主动型基金管理公司因收入下降而被迫在工程师身上花费更多金钱,这些公司还会被迫缩减人类基金分析师方面的支出来保护利润,”Martin Taylor说道。他在2016年面对来自量化基金的竞争时关闭了自己的全权对冲基金Nevsky Capital。“这对于人类而言非常糟糕。”


美国量化基金公司Acadian Asset Management的资产在过去五年内飙升了79%,达到930亿美元。这家公司提供了角色在未来会如何变化的线索。


基金经理对于经济走势的直觉是Acadian的中短期策略和其他策略的基础。数量分析专家随后会部署机器学习算法来调整和改进20个最具影响力的因素,这些因素能够推动就这些经济主题做出更好的预测,其中包括现金流以及欺诈等特别事件。这些因素随后会被插入在数月或数个季度内持有10,000个不同股票的头寸的自动化系统中。


Acadian的基金经理和分析师都是知识广博的人士:他们全都对统计学拥有全面了解,并且几乎每个人都会编写代码并拥有市场经验,量化基金全球宏观研究总监Ryan Stever表示说道。


这家总部位于美国波斯顿的公司正在对人工智能和大数据进行投资,以期更好地预测对于公司绩效而言十分关键的指标,例如销售额。如果Acadian能够在销售数据公开发布前就押对宝,那么这家公司必将获得优势。“你可以使用机器学习技术来更早、更快且更准确地获得指标,”股票选择研究总监Wes Chan表示。“如果能够奏效,那么意义十分巨大。”


一些公司甚至拥有更大的野心,那就是掌握深度学习技术。这项更加智能的人工智能技术为谷歌的搜索服务和特斯拉的自动驾驶汽车提供支持。深度学习机器可自由模仿大脑中多层神经元的活动,所需的人类指令较少。它们不需要被告知应该去发现什么就能做出决策。


“你会发现,神经网络将成为对所有交易类型而言更好的预测者和更好的工具,”帮助奠定现代人工智能系统基础并同时身为对冲基金顾问的于尔根·施密德胡伯(Juergen Schmidhuber)说道。“许多交易将通过自主学习算法执行,另外还会有少量拥有较高权限的人员偶尔加入人类决策。这会是近未来出现的场景。”


人工智能的未来最终将取决于其赚钱的能力。目前的全自动化人工智能策略组拥有表现一般的开端。它们比范围更广泛的对冲基金行业拥有更优秀的表现,但却无法胜过股票市场。一项Eureka对冲指数表明,截至2016年,13个使用人工智能的基金在六年间实现了10.6%年均增长,并在2017年10月增长了8.5%。


因此,当金融从业人员发现自己站在正在驶来的人工智能快车面前时,会有什么后果呢?商业智能公司Coalition Development的报告显示,12家最大投资银行的销售、交易和研究员工的平均年薪为50万美元,许多交易员甚至达到百万美元。另一项行业调查结果显示,2015年,5个对冲基金经理的薪水加起来有10亿美元,甚至更高。如果你认为“卡乐星汉堡”(Carl's Jr)可能用机器人取代时薪8美元的快餐店工人,那为何不用人工智能来取代这些年薪高达百万美元(时薪500美元)的交易员呢?


高盛向我们展示了自动化是如何给交易员带来毁灭性打击的。2000年,高盛位于纽约的股票现金交易部门有600个交易员。而如今,只剩下两个交易员,剩余的工作全部由机器包办这还是在人工智能全面冲击高盛之前的情况。Kensho CEO丹尼尔·纳德勒(Daniel Nadler)称:“十年后,高盛员工肯定比今天还要少很多。”除了高盛,每家主要金融公司的交易大厅也将如此。


许多美国人并不会同情电影《华尔街之狼》(The Wolf of Wall Street)中描述的那些人,但是,新的人工智能现实将通过许多方式给社会带来致命打击。想象一下人工智能对纽约高端房地产业的影响吧,再想想南安普敦(Southampton)夏天海边房子上挂着的“出售”牌子。将来,奢侈的零售商还能继续过上当前的好日子吗?届时,特朗普可能会要求一些人让交易员重返岗位,因为他们因为失业已经移居墨西哥了。


虽然如此,麦纳维奇也看到了积极的一面:那就是人工智能将金融领域的这些优秀人才“驱赶”到其他领域。


作为实现百万年薪的捷径,华尔街交易和对冲基金管理工作一直吸引着大量美国最最优秀的人才。在美国10大商学院的毕业生中,1/3都进入金融领域,只有约5%进入医疗保健市场,而进入能源或制造业的就更少了。至于每年进入非盈利组织的人数,用两只手就可以数完(不到10人)。


至于被淘汰的交易员和对冲基金经理,麦纳维奇说:“ 一些人会转移到科技创业公司,或帮助研发更多的人工智能平台,或自动驾驶汽车,或能源技术。“因为科技企业一直在为没有足够的高技术人才而焦虑,或许还会因为特朗普的移民禁令而面临“极客人才荒”。麦纳维奇还称,如果这些MBA精英离开华尔街,但不离开纽约,则纽约还有可能在科技领域与硅谷展开竞争。


将来,当数学博士发现对冲基金已经不再对他们垂涎三尺时,他们就可能走进天气预测或医疗领域。例如,国家安全局(NSA)的网站上就贴出招聘启事,称正积极寻找数学家来解决一些令人呢挠头的信号智能和信息安全问题。也许,数学专家能帮助他们抓住恐怖分子或自由主义分子。


国家安全局支付给数学家的年薪大约为10万美元,与对冲基金公司的薪水相比,简直天壤之别。


这对于守旧派选股人一样,只要他们能够让投资者的资产增值,他们就不会丢掉自己的工作。人工智能可能动摇了巴菲特的其中一个支柱。但伯克希尔公司在2011年到2016年间的年均投资回报率达到12.5%,这就表明机器尚未击败这位传奇的投资大师。


基于人工智能的对冲基金创业公司Aidyia首席科学家本·戈策尔(Ben Goertzel)曾表示, 人工智能机器攻占金融市场还有另外一个好处:“如果我们都死了,交易还会继续下去。”


因此,如果特朗普输入了核弹密码,并按下了发射按钮,至少一些人的养老金账户仍会有不错的回报。交易员和宽客们还有选择空间,总比那些卡车司机和受人工智能威胁的其他就业者好得多。


投稿

分享菁华、启迪智慧。全球菁英、商业大势、投资理财、人文感悟的加油站。


欢迎大家踊跃投稿,报酬从优,详细要求点击下方“阅读原文



友情链接